Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/3007
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKhanduja, S.K.-
dc.date.accessioned2020-12-11T05:24:53Z-
dc.date.available2020-12-11T05:24:53Z-
dc.date.issued2013-
dc.identifier.citationJournal of Algebra and its Applications, 12(1).en_US
dc.identifier.otherhttps://doi.org/10.1142/S0219498812501253-
dc.identifier.urihttps://www.worldscientific.com/doi/abs/10.1142/S0219498812501253-
dc.identifier.urihttp://hdl.handle.net/123456789/3007-
dc.descriptionOnly IISERM authors are available in the record.-
dc.description.abstractLet (K, v) be a complete rank-1 valued field. In this paper, we extend classical Hensel's Lemma to residually transcendental prolongations of v to a simple transcendental extension K(x) and apply it to prove a generalization of Dedekind's theorem regarding splitting of primes in algebraic number fields. We also deduce an irreducibility criterion for polynomials over rank-1 valued fields which extends already known generalizations of Schönemann Irreducibility Criterion for such fields. A refinement of Generalized Akira criterion proved in Khanduja and Khassa [Manuscripta Math.134(1–2) (2010) 215–224] is also obtained as a corollary of the main result.en_US
dc.language.isoenen_US
dc.publisherWorld Scientificen_US
dc.subjectValued fieldsen_US
dc.subjectNon-Archimedean valued fieldsen_US
dc.subjectIrreducible polynomialsen_US
dc.titleOn irreducible factors of polynomials over complete fieldsen_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need to add pdf.odt8.63 kBOpenDocument TextView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.