
Please use this identifier to cite or link to this item:
http://hdl.handle.net/123456789/3165
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kaur, Jotsaroop | - |
dc.date.accessioned | 2020-12-16T06:54:04Z | - |
dc.date.available | 2020-12-16T06:54:04Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Monatshefte fur Mathematik, 193(1), pp.87-103. | en_US |
dc.identifier.other | https://doi.org/10.1007/s00605-020-01417-4 | - |
dc.identifier.uri | https://link.springer.com/article/10.1007%2Fs00605-020-01417-4 | - |
dc.identifier.uri | http://hdl.handle.net/123456789/3165 | - |
dc.description | Only IISERM authors are available in the record. | - |
dc.description.abstract | In this paper we investigate the boundedness properties of bilinear multiplier operators associated with unimodular functions of the form m(ξ, η) = eiϕ(ξ-η). We prove that if ϕ is a C1(Rn) real-valued non-linear function, then for all exponents p, q, r lying outside the local L2-range and satisfying the Hölder’s condition 1p+1q=1r, the bilinear multiplier norm ‖eiλϕ(ξ-η)‖Mp,q,r(Rn)→∞,λ∈R,|λ|→∞.For exponents in the local L2-range, we give examples of unimodular functions of the form eiϕ(ξ-η), which do not give rise to bilinear multipliers. Further, we also discuss the essential continuity property of bilinear multipliers for exponents outside local L2-range. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.subject | Fourier multipliers | en_US |
dc.subject | Bilinear multipliers | en_US |
dc.subject | Transference methods | en_US |
dc.title | Unimodular bilinear Fourier multipliers on Lp spaces | en_US |
dc.type | Article | en_US |
Appears in Collections: | Research Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Need to add pdf.odt | 8.63 kB | OpenDocument Text | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.