Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/3165
Title: Unimodular bilinear Fourier multipliers on Lp spaces
Authors: Kaur, Jotsaroop
Keywords: Fourier multipliers
Bilinear multipliers
Transference methods
Issue Date: 2020
Publisher: Springer
Citation: Monatshefte fur Mathematik, 193(1), pp.87-103.
Abstract: In this paper we investigate the boundedness properties of bilinear multiplier operators associated with unimodular functions of the form m(ξ, η) = eiϕ(ξ-η). We prove that if ϕ is a C1(Rn) real-valued non-linear function, then for all exponents p, q, r lying outside the local L2-range and satisfying the Hölder’s condition 1p+1q=1r, the bilinear multiplier norm ‖eiλϕ(ξ-η)‖Mp,q,r(Rn)→∞,λ∈R,|λ|→∞.For exponents in the local L2-range, we give examples of unimodular functions of the form eiϕ(ξ-η), which do not give rise to bilinear multipliers. Further, we also discuss the essential continuity property of bilinear multipliers for exponents outside local L2-range.
Description: Only IISERM authors are available in the record.
URI: https://link.springer.com/article/10.1007%2Fs00605-020-01417-4
http://hdl.handle.net/123456789/3165
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need to add pdf.odt8.63 kBOpenDocument TextView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.