Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/3262
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBhunia, Sushil-
dc.date.accessioned2020-12-21T06:34:43Z-
dc.date.available2020-12-21T06:34:43Z-
dc.date.issued2020-
dc.identifier.citationAdvances in Applied Clifford Algebras, 30(3)en_US
dc.identifier.otherhttps://doi.org/10.1007/s00006-020-01054-y-
dc.identifier.urihttps://link.springer.com/article/10.1007%2Fs00006-020-01054-y-
dc.identifier.urihttp://hdl.handle.net/123456789/3262-
dc.descriptionOnly IISERM authors are available in the record.-
dc.description.abstractThis paper presents some algorithms in linear algebraic groups. These algorithms solve the word problem and compute the spinor norm for orthogonal groups. This gives us an algorithmic definition of the spinor norm. We compute the double coset decomposition with respect to a Siegel maximal parabolic subgroup, which is important in computing infinite-dimensional representations for some algebraic groups.en_US
dc.language.isoenen_US
dc.publisherBirkhauseren_US
dc.subjectSymplectic similitude groupen_US
dc.subjectOrthogonal similitude groupen_US
dc.subjectWord problemen_US
dc.subjectGaussian eliminationen_US
dc.subjectSpinor normen_US
dc.subjectDouble coset decompositionen_US
dc.titleAlgorithms in Linear Algebraic Groupsen_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need to add pdf.odt8.63 kBOpenDocument TextView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.