Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/3308
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKoner, A.-
dc.contributor.authorKumar, Chandan-
dc.contributor.authorSathyamurthy, N.-
dc.date.accessioned2020-12-23T04:42:13Z-
dc.date.available2020-12-23T04:42:13Z-
dc.date.issued2020-
dc.identifier.citationChemical Physics Letters, 745.en_US
dc.identifier.otherhttps://doi.org/10.1016/j.cplett.2020.137251-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0009261420301664?via%3Dihub-
dc.identifier.urihttp://hdl.handle.net/123456789/3308-
dc.description.abstractThe molar heat capacity of a carbon nanotube encapsulating rare gas atoms He, Ne, Ar and Kr is predicted using the vibrational frequency values computed by ab initio Hartree-Fock method and Density Functional Theoretic method using the M06-2X functional and the 6-31G* basis set. The computed frequency values are compared with the results obtained using an analytical function proposed by Cox et al. (2007). The molar heat capacity results are interpreted in terms of a particle-in-a-cylinder model and a three-dimensional confined harmonic oscillator model.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.subjectCarbonen_US
dc.subjectNanotubeen_US
dc.subjectVibrational frequencyen_US
dc.titleHeat capacity of endohedral carbon nanotubes Rg@CNT (Rg = He, Ne, Ar and Kr)en_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need to add pdf.odt8.63 kBOpenDocument TextView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.