Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/3353
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSinha, Sudeshna-
dc.date.accessioned2020-12-24T06:42:45Z-
dc.date.available2020-12-24T06:42:45Z-
dc.date.issued2020-
dc.identifier.citationPhysical Review E, 101(6)en_US
dc.identifier.otherhttps://doi.org/10.1103/PhysRevE.101.062207-
dc.identifier.urihttps://journals.aps.org/pre/abstract/10.1103/PhysRevE.101.062207-
dc.identifier.urihttp://hdl.handle.net/123456789/3353-
dc.descriptionOnly IISERM authors are available in the record.-
dc.description.abstractArtificial neural networks are universal function approximators. They can forecast dynamics, but they may need impractically many neurons to do so, especially if the dynamics is chaotic. We use neural networks that incorporate Hamiltonian dynamics to efficiently learn phase space orbits even as nonlinear systems transition from order to chaos. We demonstrate Hamiltonian neural networks on a widely used dynamics benchmark, the Hénon-Heiles potential, and on nonperturbative dynamical billiards. We introspect to elucidate the Hamiltonian neural network forecasting.en_US
dc.language.isoenen_US
dc.publisherAmerican Physical Societyen_US
dc.subjectChaos theoryen_US
dc.subjectDynamicsen_US
dc.subjectHamiltoniansen_US
dc.subjectPhase space methodsen_US
dc.subjectNeural networksen_US
dc.titlePhysics-enhanced neural networks learn order and chaosen_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
need to add pdf....odt8.12 kBOpenDocument TextView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.