Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/3391
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNaik, T.K.-
dc.contributor.authorNanda, N.-
dc.contributor.authorSingh, Mahender-
dc.date.accessioned2020-12-26T10:13:54Z-
dc.date.available2020-12-26T10:13:54Z-
dc.date.issued2020-
dc.identifier.citationForum Mathematicum, 32(5), pp.1095-1108.en_US
dc.identifier.otherhttps://doi.org/10.1515/forum-2019-0321-
dc.identifier.urihttps://www.degruyter.com/view/journals/form/32/5/article-p1095.xml-
dc.identifier.urihttp://hdl.handle.net/123456789/3391-
dc.description.abstractThe twin group Tn is a right-angled Coxeter group generated by n - 1 involutions, and the pure twin group PTn is the kernel of the natural surjection from Tn onto the symmetric group on n symbols. In this paper, we investigate some structural aspects of these groups. We derive a formula for the number of conjugacy classes of involutions in Tn, which, quite interestingly, is related to the well-known Fibonacci sequence. We also derive a recursive formula for the number of z-classes of involutions in Tn. We give a new proof of the structure of Aut (Tn) for n ≥ 3, and show that Tn is isomorphic to a subgroup of Aut (PTn) for n ≥ 4. Finally, we construct a representation of Tn to Aut (Fn) for n ≥ 2en_US
dc.language.isoenen_US
dc.publisherDe Gruyter Open Ltden_US
dc.subjectConjugacy problemen_US
dc.subjectFibonacci sequenceen_US
dc.subjectPure twin groupen_US
dc.subjectTwin groupen_US
dc.titleConjugacy classes and automorphisms of twin groupsen_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
need to add pdf....odt8.12 kBOpenDocument TextView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.