Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/3434
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNaik, T.K.-
dc.contributor.authorNanda, N.-
dc.contributor.authorSingh, Mahender-
dc.date.accessioned2020-12-29T05:02:02Z-
dc.date.available2020-12-29T05:02:02Z-
dc.date.issued2020-
dc.identifier.citationJournal of Knot Theory and its Ramifications, 29(10).en_US
dc.identifier.otherhttps://doi.org/10.1142/S0218216520420067-
dc.identifier.urihttps://www.worldscientific.com/doi/abs/10.1142/S0218216520420067-
dc.identifier.urihttp://hdl.handle.net/123456789/3434-
dc.description.abstractThe twin group Tn is a right angled Coxeter group generated by n−1 involutions and having only far commutativity relations. These groups can be thought of as planar analogues of Artin braid groups. In this paper, we study some properties of twin groups whose analogues are well known for Artin braid groups. We give an algorithm for two twins to be equivalent under individual Markov moves. Further, we show that twin groups Tn have R∞-property and are not co-Hopfian for n≥3.en_US
dc.language.isoenen_US
dc.publisherWorld Scientificen_US
dc.subjectCo-Hopfianen_US
dc.subjectRight angled Coxeter groupsen_US
dc.subjectTwisted conjugacy classen_US
dc.titleSome remarks on twin groupsen_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need to add pdf.odt8.63 kBOpenDocument TextView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.