Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/3449
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBhunia, Sushil-
dc.contributor.authorBose, A.-
dc.date.accessioned2020-12-30T04:49:49Z-
dc.date.available2020-12-30T04:49:49Z-
dc.date.issued2020-
dc.identifier.citationTransformation Groupsen_US
dc.identifier.other10.1007/s00031-020-09626-9-
dc.identifier.urihttps://link.springer.com/article/10.1007/s00031-020-09626-9-
dc.identifier.urihttp://hdl.handle.net/123456789/3449-
dc.description.abstractLet k be an algebraically closed field, G a linear algebraic group over k and φ ∈ Aut(G), the group of all algebraic group automorphisms of G. Two elements x; y of G are said to be φ-twisted conjugate if y = gxφ(g)–1 for some g ∈ G. In this paper we prove that for a connected non-solvable linear algebraic group G over k, the number of its φ-twisted conjugacy classes is infinite for every φ ∈ Aut(G).en_US
dc.language.isoenen_US
dc.publisherSpringer Linken_US
dc.subjectLinear algebraicen_US
dc.subjectInfiniteen_US
dc.subjectG over ken_US
dc.titleTWISTED CONJUGACY IN LINEAR ALGEBRAIC GROUPSen_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need to add pdf.odt8.63 kBOpenDocument TextView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.