Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/3450
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDutta, A.-
dc.contributor.authorKuhlmann, F.V.-
dc.date.accessioned2020-12-30T05:01:55Z-
dc.date.available2020-12-30T05:01:55Z-
dc.date.issued2020-
dc.identifier.citationPacific Journal of Mathematics 307(1), pp. 121-136en_US
dc.identifier.other10.2140/pjm.2020.307.121-
dc.identifier.urihttps://msp.org/pjm/2020/307-1/p07.xhtml-
dc.identifier.urihttp://hdl.handle.net/123456789/3450-
dc.description.abstractA basic version of Abhyankar’s lemma states that for two finite extensions L and F of a local field K, if L|K is tamely ramified and if the ramification index of L|K divides the ramification index of F|K, then the compositum L.F is an unramified extension of F. In this paper, we generalize the result to valued fields with value groups of rational rank 1, and show that the latter condition is necessary. Replacing the condition on the ramification indices by the condition that the value group of L be contained in that of F, we generalize the result further in order to give a necessary and sufficient condition for the elimination of tame ramification of an arbitrary extension F|K by a suitable algebraic extension of the base field K. In addition, we derive more precise ramification theoretical statements and give several examples.en_US
dc.language.isoenen_US
dc.publisherUniversity of California, Berkeleyen_US
dc.subjectValuationen_US
dc.subjectElimination of ramificationen_US
dc.subjectRamification theoryen_US
dc.subjectTame extensionen_US
dc.titleEliminating tame ramification: generalizations of Abhyankar's lemmaen_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need to add pdf.odt8.63 kBOpenDocument TextView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.