Please use this identifier to cite or link to this item:
http://hdl.handle.net/123456789/3498
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gupta, Neal S. | - |
dc.date.accessioned | 2021-01-04T04:45:59Z | - |
dc.date.available | 2021-01-04T04:45:59Z | - |
dc.date.issued | 2012 | - |
dc.identifier.citation | Palaios, 27(5), pp.279-287. | en_US |
dc.identifier.other | http://dx.doi.org/10.2110/palo.2011.p11-031r | - |
dc.identifier.uri | https://www.crossref.org/iPage?doi=10.2110%2Fpalo.2011.p11-031r | - |
dc.identifier.uri | http://hdl.handle.net/123456789/3498 | - |
dc.description | Only IISERM authors are available in the record. | - |
dc.description.abstract | The molecular preservation of exceptionally preserved conifer needles from middle Miocene and Pliocene deposits on Banks Island, Canada, was investigated using pyrolysisgas chromatographymass spectrometry (Py-GC-MS). Solvent-extracted residues from Miocene Larix, Glyptostrobus, and Pinus, Pliocene Picea, and their associated bulk material, yielded abundant polysaccharide pyrolysis products, such as 2-methylfuran, 2-furaldehyde, and levoglucosan, indicating excellent molecular preservation. Comparison of pyrolysates of individual plant taxa and bulk material from the same deposits revealed the dominance of particular plant taxa in these high latitude floras. Comparison with fossil Lagersttten from Ellesmere Island (late Paleocene) and Axel Heiberg Island (middle Eocene), both in the Canadian Arctic Archipelago, and Clarkia in Idaho, United States (middle Miocene), demonstrated that the quality of molecular preservation of material from Banks Island is similar to that of Axel Heiberg Island and lies between those of Ellesmere Island and the Clarkia deposit. The ranking of molecular preservation was paralleled by scanning electron microscopy (SEM) observations. Analysis of Larix and Glyptostrobus from different geological ages (Eocenerecent) and locations indicated that age does not correlate with molecular preservation in these fossil Lagersttten. When relative abundance ratios of vinyl phenol (m/z 91120), guaiacyl (m/z 109124), and levoglucosan (m/z 6073) are used as indicators of the preservation of cutin, lignin, and cellulose, our results suggest that variations in the pyrolysates among several genera reflect different original molecular compositions as well as paleoenvironmental conditions for preservation. The data also illuminate the role of labile biomolecules in the taphonomy of three-dimensionally preserved morphological structures in these Arctic plant fossils. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Society for Sedimentary Geology | en_US |
dc.subject | Cenozoic | en_US |
dc.subject | Coniferous tree | en_US |
dc.subject | Eocene | en_US |
dc.subject | Fossil record | en_US |
dc.title | Molecular preservation of cenozoic conifer fossil lagersttten from banks island, the canadian arctic | en_US |
dc.type | Article | en_US |
Appears in Collections: | Research Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Need to add pdf.odt | 8.63 kB | OpenDocument Text | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.