Please use this identifier to cite or link to this item:
http://hdl.handle.net/123456789/3664
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Bhaumik, Jnanajyoti | - |
dc.date.accessioned | 2021-06-16T06:14:00Z | - |
dc.date.available | 2021-06-16T06:14:00Z | - |
dc.date.issued | 2020-05 | - |
dc.identifier.uri | http://hdl.handle.net/123456789/3664 | - |
dc.description.abstract | The main aim of this thesis is to study the Alexander’s Polynomial and it’s construction. This polynomial is a knot invariant, that means, if we pick isotopic knots, they will have the same value. We will look at two methods of construction of the infinite cyclic cover of a knot group and in the process come up with an invariant - The Alexander’s Polynomial as well as deduce a lower bound for the unknotting number of a knot. The subsequent chapters deal with applications of the Alexander Polynomial and alternate procedures through which we can construct the Alexander Polynomial. | en_US |
dc.language.iso | en | en_US |
dc.publisher | IISERM | en_US |
dc.title | On Knots and the Alexander Polynomial | en_US |
dc.type | Thesis | en_US |
dc.guide | D’mello, Shane | - |
Appears in Collections: | MS Dissertation by MP-2017 |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
It is under embargo period.odt | 9.47 kB | OpenDocument Text | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.