Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/400
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGupta, Titiksh-
dc.date.accessioned2014-07-24T04:34:36Z-
dc.date.available2014-07-24T04:34:36Z-
dc.date.issued2014-07-22-
dc.identifier.urihttp://hdl.handle.net/123456789/400-
dc.description.abstractThe aim of this THESIS is to highlight the major developments in the arithmetic-geometric aspects of the modular group. After covering geomet- ric aspects of Fuchsian groups, we study various variants of the Poincar ́e polygon theorem. Arithmetic methods like Farey Symbols have been used to describe the subgroups of P SL(2, Z). Graph-theoretical approach has been used to study algorithm for generating all trivalent diagrams. Finally, we conclude by describing algorithms for testing membership of matrices in P SL(2, Z) by using the concept of Farey Symbols.en_US
dc.description.sponsorshipIISER Men_US
dc.language.isoenen_US
dc.publisherIISER Men_US
dc.subjectHyperbolic Geometryen_US
dc.subjectMathematicsen_US
dc.subjectPoincar ́e Disc Modelen_US
dc.subjectTrigonometryen_US
dc.subjectFuchsian groupsen_US
dc.subjectMobius Transformationen_US
dc.titleArithmetic Geometric aspects of modular groupsen_US
dc.typeThesisen_US
dc.guideGongopadhyay, Krishnendu-
Appears in Collections:MS-09

Files in This Item:
File Description SizeFormat 
MS-09131.pdf753.66 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.