Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/4239
Title: A Study of C*-algebras
Authors: Dueby, Sukrit
Keywords: C*-algebras
Study
Issue Date: Apr-2022
Publisher: IISER Mohali
Abstract: C ∗ -algebras are modelled upon the operator algebra of bounded operators on a Hilbert space, B(H). In this study we try to understand several properties of such objects which will help us explain the generalisation of certain phenomenon from linear algebra to anal- ysis of infinite dimensional linear spaces.We understand the idea of constructing holomor- phic and later continuous functional calculus. We then arrive at characterising commuta- tive unital C ∗ -algebra as will be seen that such structures are isometrically isomorphic to C(X), the space of all complex valued continuous functions on a compact metric space. With some more associated constructions we will be able to understand the decomposi- tion of Normal operators on Hilbert spaces. Finally, the study of representations of C ∗ algebras generated by compact operators on Hilbert spaces will yield a structure theorem for finite dimensional algebras which serve as a prototype for new C ∗ -algebras built by finite dimensional ones.
URI: http://hdl.handle.net/123456789/4239
Appears in Collections:MS-17

Files in This Item:
File Description SizeFormat 
Yet to obtain consent.pdf144.56 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.