Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/4382
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSahasrabudhe, Neeraja-
dc.date.accessioned2023-08-08T10:59:26Z-
dc.date.available2023-08-08T10:59:26Z-
dc.date.issued2022-
dc.identifier.citationStochastic Processes and their Applications, 146(1), p80-97.en_US
dc.identifier.urihttp://hdl.handle.net/123456789/4382-
dc.identifier.urihttps://doi.org/10.1016/j.spa.2021.12.009-
dc.descriptionOnly IISER Mohali authors are available in the record.en_US
dc.description.abstractWe consider the random walk in an independent and identically distributed (i.i.d.) random environment on a Cayley graph of a finite free product of copies of and . Such a Cayley graph is readily seen to be a regular tree. Under a uniform ellipticity assumption on the i.i.d. environment we show that the walk has positive speed and establish the annealed central limit theorem for the graph distance of the walker from the starting pointen_US
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.subjectCayley treesen_US
dc.subjectannealeden_US
dc.subjectI.I.D.en_US
dc.subjectenvironmenten_US
dc.titleSLLN and annealed CLT for random walks in I.I.D. random environment on Cayley treesen_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need To Add…Full Text_PDF..pdf15.36 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.