Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/4638
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChhajed, Kartik-
dc.date.accessioned2023-08-12T13:31:48Z-
dc.date.available2023-08-12T13:31:48Z-
dc.date.issued2021-
dc.identifier.citationResonance, 26(11), 1539-1558.en_US
dc.identifier.urihttps://doi.org/10.1007/s12045-021-1261-6-
dc.identifier.urihttp://hdl.handle.net/123456789/4638-
dc.descriptionOnly IISERM authors are available in the record.en_US
dc.description.abstractIn this general article, we map the one-dimensional transverse field quantum Ising model of ferromagnetism to Kitaev’s one-dimensional p-wave superconductor, which has application in fault-tolerant topological quantum computing. Kitaev chain is an example of a new class of quantum critical phenomena—the topological phase transition. Mapping Pauli’s spin operators of transverse field quantum Ising chain to spinless fermionic creation and annihilation operators by inverse Jordan-Wigner transformation leads to a Hamiltonian form closely related Kitaev chain.en_US
dc.language.isoen_USen_US
dc.publisherSpringer Natureen_US
dc.subjectIsing Modelen_US
dc.subjectKitaev Chainen_US
dc.titleFrom ising model to kitaev chain: An introduction to topological phase transitions.en_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need To Add…Full Text_PDF.15.36 kBUnknownView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.