Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/4777
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPatil, Sunil A-
dc.date.accessioned2023-08-17T08:57:17Z-
dc.date.available2023-08-17T08:57:17Z-
dc.date.issued2022-
dc.identifier.citationJoule, 6(7), 1399-1401en_US
dc.identifier.urihttps://doi.org/10.1016/j.joule.2022.06.033-
dc.identifier.urihttp://hdl.handle.net/123456789/4777-
dc.descriptionOnly IISERM authors are available in the recorden_US
dc.description.abstractMicrobial extracellular electron transfer-based processes are rapidly progressing toward real-world wastewater treatment applications, but their technological progress as an electric power source remains elusive. It is mainly due to low and unstable power density and high internal resistance of the bioelectrochemical systems. In a recent Energy & Environmental Science article, Bombelli and coworkers report a bio-photovoltaic energy harvester system using photosynthetic microorganisms at the Al anode that can power a widely used microprocessor Arm Cortex M0+ for 6 months without supporting energy devices.en_US
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.subjectBioelectrochemicalen_US
dc.subjectMicrobial extracellularen_US
dc.titleMicrobially catalyzed bioelectrochemical power devices come of ageen_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need To Add…Full Text_PDF..pdf15.36 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.