Please use this identifier to cite or link to this item:
http://hdl.handle.net/123456789/5052
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Pal, Santanu Kumar | - |
dc.date.accessioned | 2023-08-22T16:03:17Z | - |
dc.date.available | 2023-08-22T16:03:17Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Journal of Materials Chemistry B, 10(16), 3032-3038. | en_US |
dc.identifier.uri | https://doi.org/10.1039/d2tb00098a | - |
dc.identifier.uri | http://hdl.handle.net/123456789/5052 | - |
dc.description | Only IISER Mohali authors are available in the record. | en_US |
dc.description.abstract | Nanoscale assemblies of amphiphiles have been vividly explored in pharmaceutical formulations as drug nanocarriers. Aqueous interfaces of liquid crystals (LCs) are known to direct the self-assembly of a range of amphiphiles. These amphiphile-decorated interfaces of LCs have evoked interest for applications as diverse as the detection of disease markers, screening of toxins, mimicking complex biomolecular interactions, and cell-based sensing. Aiming to explore these interfaces for encapsulation and enzyme-triggered release, we report a simple and rational design of enzyme-responsive LC interfaces programmed with a cleavable non-ionic surfactant. We encapsulated a hydrophobic dye within the surfactant micelles and investigated the enzyme-triggered dye release. Interestingly, we found that LC droplets, when decorated with the dye-loaded micelles, offer significant advantages over the conventional micellar nanocarriers. The LC droplets showed controlled release features which weren’t affected at high dilutions. Our work, although exploratory in nature, provides fresh approaches for tailoring LC interfaces as vehicles for drug delivery. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Royal Society of Chemistry | en_US |
dc.subject | Tailoring liquid crystals | en_US |
dc.subject | vehicles for encapsulation | en_US |
dc.subject | enzyme-triggered release | en_US |
dc.title | Tailoring liquid crystals as vehicles for encapsulation and enzyme- triggered release. | en_US |
dc.type | Article | en_US |
Appears in Collections: | Research Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Need To Add…Full Text_PDF. | 15.36 kB | Unknown | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.