Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/5114
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDutta, Arpan-
dc.date.accessioned2023-08-23T17:39:53Z-
dc.date.available2023-08-23T17:39:53Z-
dc.date.issued2022-
dc.identifier.citationJournal of Commutative Algebra, 14(4), 515-525.en_US
dc.identifier.urihttps://doi.org/10.1216/jca.2022.14.515-
dc.identifier.urihttp://hdl.handle.net/123456789/5114-
dc.descriptionOnly IISER Mohali authors are available in the record.en_US
dc.description.abstractThis article is a natural continuation of our previous works [Dutta 2021] and [Dutta 2022]. In this article, we employ similar ideas as in [Alexandru, Popescu and Zaharescu 1990] to provide an estimate of IC(K(X)∣K,v) when (K(X)∣K,v) when is a valuation algebraic extension. Our central result is an analogue of [Dutta 2022, Theorem 1.3]. We further provide a natural construction of a complete sequence of key polynomials for v over K over in the setting of valuation algebraic extensions.en_US
dc.language.isoen_USen_US
dc.publisherRocky Mountain Mathematics Consortiumen_US
dc.subjectImplicit constanten_US
dc.subjectAlgebraic extensionsen_US
dc.titleOn the implicit constant fields and key polynomials for valuation algebraic extensionsen_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need To Add…Full Text_PDF.15.36 kBUnknownView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.