Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/5116
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDutta, Arpan-
dc.date.accessioned2023-08-23T17:45:26Z-
dc.date.available2023-08-23T17:45:26Z-
dc.date.issued2022-
dc.identifier.citationCommunications in Algebra, 50(11), 4964-4974.en_US
dc.identifier.urihttps://doi.org/10.1080/00927872.2022.2078833-
dc.identifier.urihttp://hdl.handle.net/123456789/5116-
dc.descriptionOnly IISER Mohali authors are available in the record.en_US
dc.description.abstractAn extension (K(X)|K,v) of valued fields is said to be valuation transcendental if we have equality in the Abhyankar inequality. Minimal pairs of definition are fundamental objects in the investigation of valuation transcendental extensions. In this article, we associate a uniquely determined positive integer with a valuation transcendental extension. This integer is defined via a chosen minimal pair of definition, but it is later shown to be independent of the choice. Further, we show that this integer encodes important information regarding the implicit constant field of the extension (K(X)|K,v).en_US
dc.language.isoen_USen_US
dc.publisherTaylor and Francisen_US
dc.subjectvaluation transcendental extensionsen_US
dc.subjectextensions of valuation to rational function fieldsen_US
dc.titleMinimal pairs, inertia degrees, ramification degrees and implicit constant fieldsen_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need To Add…Full Text_PDF.15.36 kBUnknownView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.