Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/5119
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAribam, Chandrakant-
dc.date.accessioned2023-08-23T17:53:28Z-
dc.date.available2023-08-23T17:53:28Z-
dc.date.issued2022-
dc.identifier.citationResearch in Number Theory, 8(4), 104.en_US
dc.identifier.urihttps://doi.org/10.1007/s40993-022-00405-x-
dc.identifier.urihttp://hdl.handle.net/123456789/5119-
dc.descriptionOnly IISER Mohali authors are available in the record.en_US
dc.description.abstractThe classification of the local Galois representations using (φ,Γ)-modules by Fontaine has been generalized by Kisin and Ren over the Lubin-Tate extensions of local fields using the theory of (φq,ΓLT)-modules. In this paper, we extend the work of (Fontaine) Herr by introducing a complex which allows us to compute cohomology over the Lubin-Tate extensions and compare it with the Galois cohomology groups. We further extend that complex to include certain non-abelian extensions. We then deduce some relations of this cohomology with those arising from (ψq,ΓLT)-modules. We also compute the Iwasawa cohomology over the Lubin-Tate extensions in terms of the ψq-operator acting on the étale (φq,ΓLT)-module attached to the local Galois representation. Moreover, we generalize the notion of (φq,ΓLT)-modules over the coefficient ring R and show that the equivalence given by Kisin and Ren extends to the Galois representations over R. This equivalence allows us to generalize our results to the case of coefficient rings.en_US
dc.language.isoen_USen_US
dc.publisherSpringer Natureen_US
dc.subjectGalois cohomologyen_US
dc.subjectLocal fieldsen_US
dc.titleGalois cohomology for Lubin-Tate (φq,ΓLT)-modules over coefficient ringsen_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need To Add…Full Text_PDF.15.36 kBUnknownView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.