Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/5123
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBalwe, Chetan-
dc.contributor.authorRani, Bandna-
dc.contributor.authorSawant, Anand-
dc.date.accessioned2023-08-23T18:14:15Z-
dc.date.available2023-08-23T18:14:15Z-
dc.date.issued2022-
dc.identifier.citationAnnals of K-Theory, 7(2), 385--394.en_US
dc.identifier.urihttps://doi.org/10.2140/akt.2022.7.385-
dc.identifier.urihttp://hdl.handle.net/123456789/5123-
dc.descriptionOnly IISER Mohali authors are available in the record.en_US
dc.description.abstractWe show that the sheaf of A 1 - connected components of a Nisnevich sheaf of sets and its universal A 1 - invariant quotient (obtained by iterating the A 1 - chain connected components construction and taking the direct limit) agree on field-valued points. This establishes an explicit formula for the field-valued points of the sheaf of A 1 - connected components of any space. Given any natural number n , we construct an A 1 -connected space on which the iterations of the naive A1 - connected components construction do not stabilize before the n-th stage.en_US
dc.language.isoen_USen_US
dc.publisherMath­em­at­ic­al Sci­ences Pub­lish­ersen_US
dc.subjectMorel's conjectureen_US
dc.subjectchain connected componentsen_US
dc.titleRemarks on iterations of the A1-chain connected components construction.en_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need To Add…Full Text_PDF.15.36 kBUnknownView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.