Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/5228
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNeelakantan Memana, Gautam-
dc.contributor.authorMaity, Soma-
dc.date.accessioned2023-08-29T09:03:20Z-
dc.date.available2023-08-29T09:03:20Z-
dc.date.issued2022-
dc.identifier.citationManuscripta Mathematica, 01436-5.en_US
dc.identifier.urihttps://doi.org/10.1007/s00229-022-01436-5-
dc.identifier.urihttp://hdl.handle.net/123456789/5228-
dc.descriptionOnly IISER Mohali authors are available in the record.en_US
dc.description.abstractConsider a proper geodesic metric space (X, d) equipped with a Borel measure μ. We establish a family of uniform Poincaré inequalities on (X,d,μ) if it satisfies a local Poincaré inequality Ploc, and a condition on the growth of volume. Consequently, if μ is doubling and supports Ploc then it satisfies a uniform (σ,β,σ)-Poincaré inequality. If (X,d,μ) is a Gromov-hyperbolic space, then using the volume comparison theorem in Besson et al. (Curvature-free Margulis lemma for Gromov-hyperbolic spaces, 2020), we obtain a uniform Poincaré inequality with the exponential growth of the Poincaré constant. Next, we relate the growth of Poincaré constants to the growth of discrete subgroups of isometries of X, which act on it properly. We show that if X is the universal cover of a compact CD(K,∞) space with K≤0, it supports a uniform Poincaré inequality, and the Poincaré constant depends on the growth of the fundamental group of the quotient space.en_US
dc.language.isoen_USen_US
dc.publisherSpringer Natureen_US
dc.subjectMetric spacesen_US
dc.subjectPoincaré inequalitiesen_US
dc.titleUniform Poincaré inequalities on measured metric spacesen_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need To Add…Full Text_PDF.15.36 kBUnknownView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.