Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/5231
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJotsaroop, K.-
dc.contributor.authorPusti, Sanjoy-
dc.date.accessioned2023-08-29T09:13:34Z-
dc.date.available2023-08-29T09:13:34Z-
dc.date.issued2022-
dc.identifier.citationMonatshefte fur Mathematik, 199(3), 555-593.en_US
dc.identifier.urihttps://doi.org/10.1007/s00605-022-01769-z-
dc.identifier.urihttp://hdl.handle.net/123456789/5231-
dc.descriptionOnly IISER Mohali authors are available in the record.en_US
dc.description.abstractIn this paper we prove an analogue of the Ramanujan’s master theorem in the setting of Sturm Liouville operator L = d2/dt2 + A'(t) /A(t).d/dt , on (0,∞), where A(t) = (sinh t)2α+1(cosh t)2β+1B(t); α, β > −1 2 with suitable conditions on B. When B ≡ 1 we get back the Ramanujan’s Master theorem for the Jacobi operator.en_US
dc.language.isoen_USen_US
dc.publisherSpringer Natureen_US
dc.subjectRamanujan’s master theoremen_US
dc.subjectliouville operatoren_US
dc.titleRamanujan’s master theorem for sturm liouville operatoren_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need To Add…Full Text_PDF.15.36 kBUnknownView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.