Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/5234
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGongopadhyay, Krishnendu-
dc.date.accessioned2023-08-29T09:31:10Z-
dc.date.available2023-08-29T09:31:10Z-
dc.date.issued2022-
dc.identifier.citationJournal of the Australian Mathematical Society, 113(1), 57–78.en_US
dc.identifier.urihttps://doi.org/10.1017/S144678872100001X-
dc.identifier.urihttp://hdl.handle.net/123456789/5234-
dc.descriptionOnly IISER Mohali authors are available in the record.en_US
dc.description.abstractLet G(n)=Sp(n,1) or SU(n,1) . We classify conjugation orbits of generic pairs of loxodromic elements in G(n) . Such pairs, called ‘nonsingular’, were introduced by Gongopadhyay and Parsad for SU(3,1) . We extend this notion and classify G(n) -conjugation orbits of such elements in arbitrary dimension. For n=3 , they give a subspace that can be parametrized using a set of coordinates whose local dimension equals the dimension of the underlying group. We further construct twist-bend parameters to glue such representations and obtain local parametrization for generic representations of the fundamental group of a closed (genus g≥2 ) oriented surface into G(3).en_US
dc.language.isoen_USen_US
dc.publisherCambridge University Pressen_US
dc.subjectCharacter varietyen_US
dc.subjectComplex hyperbolic spaceen_US
dc.titleLocal Coordinates for Complex and Quaternionic Hyperbolic Pairsen_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need To Add…Full Text_PDF.15.36 kBUnknownView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.