Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/5235
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGongopadhyay, Krishnendu-
dc.contributor.authorLohan, Tejbir-
dc.date.accessioned2023-08-29T09:41:15Z-
dc.date.available2023-08-29T09:41:15Z-
dc.date.issued2022-
dc.identifier.citationLinear Algebra and Its Applications, 639 159-176.en_US
dc.identifier.urihttps://doi.org/10.1016/j.laa.2022.01.009-
dc.identifier.urihttp://hdl.handle.net/123456789/5235-
dc.descriptionOnly IISER Mohali authors are available in the record.en_US
dc.description.abstractAn element g in a group G is called reversible (or real) if it is conjugate to g−1 in G, i.e., there exists h in G such that g−1 = hgh−1. The element g is called strongly reversible if the conjugating element h is an involution (i.e., element of order at most two) in G. In this paper, we classify reversible and strongly reversible elements in the isometry groups of F-Hermitian spaces, where F = C or H. More precisely, we classify reversible and strongly reversible elements in the groups Sp(n)Hn, U(n)Cn and SU(n)Cn. We also give a new proof of the classification of strongly reversible elements in Sp(n).en_US
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.subjectHermitian isometriesen_US
dc.subjectAffine isometriesen_US
dc.titleReversibility of Hermitian isometriesen_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need To Add…Full Text_PDF.15.36 kBUnknownView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.