Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/5244
Title: Counterexamples to a conjecture of M. Pellegrini and P. Shumyatsky
Authors: Kundu, Rijubrata
Keywords: Non-abelian simple group
Set of commutators
Issue Date: 2022
Publisher: Springer Nature
Citation: Ricerche di Matematica, 748-8.
Abstract: In this article, we provide counterexamples to a conjecture of M. Pellegrini and P. Shumyatsky which states that each coset of the centralizer of an involution in a finite non-abelian simple group G contains an odd order element, unless G=PSL(n,2) for n≥4. More precisely, we show that the conjecture does not hold for the alternating group A8n for all n≥2.
Description: Only IISER Mohali authors are available in the record.
URI: https://doi.org/10.1007/s11587-022-00748-8
http://hdl.handle.net/123456789/5244
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need To Add…Full Text_PDF.15.36 kBUnknownView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.