Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/5244
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKundu, Rijubrata-
dc.date.accessioned2023-08-29T11:10:44Z-
dc.date.available2023-08-29T11:10:44Z-
dc.date.issued2022-
dc.identifier.citationRicerche di Matematica, 748-8.en_US
dc.identifier.urihttps://doi.org/10.1007/s11587-022-00748-8-
dc.identifier.urihttp://hdl.handle.net/123456789/5244-
dc.descriptionOnly IISER Mohali authors are available in the record.en_US
dc.description.abstractIn this article, we provide counterexamples to a conjecture of M. Pellegrini and P. Shumyatsky which states that each coset of the centralizer of an involution in a finite non-abelian simple group G contains an odd order element, unless G=PSL(n,2) for n≥4. More precisely, we show that the conjecture does not hold for the alternating group A8n for all n≥2.en_US
dc.language.isoen_USen_US
dc.publisherSpringer Natureen_US
dc.subjectNon-abelian simple groupen_US
dc.subjectSet of commutatorsen_US
dc.titleCounterexamples to a conjecture of M. Pellegrini and P. Shumyatskyen_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need To Add…Full Text_PDF.15.36 kBUnknownView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.