Please use this identifier to cite or link to this item:
http://hdl.handle.net/123456789/5470
Title: | Spectral Theory of Normal Operators |
Authors: | Das, Biplab |
Keywords: | Spectral Theory Normal Operators |
Issue Date: | May-2023 |
Publisher: | IISER Mohali |
Abstract: | We discuss the spectral theory of bounded normal operators on Hilbert Space and functional cal- culus, as well as the Gelfand-Neimark-Segal construction of C ⇤ -algebras, also discuss symmetric extensions of unbounded operators. We begin by introducing the spectral theory for compact self-adjoint operators and then extend it to compact normal operators. We also discuss the idea of the spectrum for Banach algebras and explores complex analysis for operator-valued functions, including integration and Cauchy integral formula. Finally, we discuss the concept of unbounded operators and provides the idea of symmetric self-adjoint extensions of closed symmetric unbounded operators |
URI: | http://hdl.handle.net/123456789/5470 |
Appears in Collections: | MP-20 |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
embargo period.pdf | 6.04 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.