Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/5766
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChand, Rupkatha.-
dc.date.accessioned2025-04-04T12:49:26Z-
dc.date.available2025-04-04T12:49:26Z-
dc.date.issued2024-05-
dc.identifier.urihttp://hdl.handle.net/123456789/5766-
dc.description.abstractIn this thesis, we study the Teichmüller space of compact Riemann surfaces — the space of marked compact Riemann surfaces. First, we study a topological structure on the Teichmüller space of higher genus surfaces S g (g ≥ 2) through its description separately through Fenchel-Nielsen coordinates and as the space of discrete faithful representation of π 1 (S g ) into Isom(H 2 ) ∼ = PSL(2, R). Later we introduce the descrip- tion of the Teichmüller space using quasiconformal maps, which yields the Teichmüller metric on the Teichmüller space. Lastly, we briefly have a look at the Thurston com- pactification of the Teichmüller space.en_US
dc.language.isoenen_US
dc.publisherIISER Mohalien_US
dc.subjectTeichmüller Spacesen_US
dc.subjectCompact Riemann Surfaces.en_US
dc.subjectSpaces of Compact Riemann Surfacesen_US
dc.subjectRiemann Surfaces.en_US
dc.titleTeichmüller Spaces of Compact Riemann Surfaces.en_US
dc.typeOtheren_US
dc.guideDr. Pranav Sardar.en_US
Appears in Collections:MS-19

Files in This Item:
File Description SizeFormat 
Under Embargo period.odt9.72 kBOpenDocument TextView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.