Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/657
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVerma, Atul-
dc.date.accessioned2016-09-05T10:59:51Z-
dc.date.available2016-09-05T10:59:51Z-
dc.date.issued2015-06-26-
dc.identifier.urihttp://hdl.handle.net/123456789/657-
dc.description.abstractA surprising relation has been found by numerous authors between the modular flow and the Lorenzian dynamical system. These two systems are topologically isomorphic. This allows us to use modular knots to study closed orbits of the Lorenzian system. Following an exposition of these topics by Etienne Ghys some computer generated knots are exhibited.en
dc.description.sponsorshipIISER-Men_US
dc.language.isoenen_US
dc.publisherIISER-Men_US
dc.subjectMathematicsen_US
dc.subjectHomogeneous Spacesen_US
dc.subjectDynamical Systemsen_US
dc.titleModular Dynamical System and Modular Flowen_US
dc.typeThesisen_US
dc.guideParanjape, K.H.-
Appears in Collections:MS-09

Files in This Item:
File Description SizeFormat 
MS-09034.pdf979.84 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.